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Abstract

It is well known how to find the formulae for the number of representations of positive integers by the positive
binary quadratic forms which belong to one-class genera. In this paper we obtain the formulae for the number of
representations by certain binary forms with discriminants —80 and —128 belonging to the genera having two

classes.
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I.  Introduction
Let r(n; f) denote a number of representations
of a positive integer n by a positive definite
quadratic form f with a number of variables s. It is
well known that, for case s>4, r(n;f) can be
represented as
r(n; )= p(n; f)+v(n; ),
where p(n; f) is a “singular series” and v(n; f) is
a Fourier coefficient of cusp form. This can be
expressed in terms of the theory of modular forms
by stating that
H(z; T)=E(z; )+ X(2),

9z ) =1+ D r(n; )Q",
n=1
where 7eH ={r:Imz>0}, Q=e*"", X(2) is a
cusp form and

E(r, f):1+ip(n; f)Q"
n=1

is the Eisenstein series corresponding to f.
Siegel [1] proved that if the number of variables of a
quadratic form f is s >4, then
E@@f)=F(@ 1),
where F(z;f) denote a theta-series of a genus

containing a primitive quadratic form f (both
positive-definite and indefinite).

From formula (2) follows the well-known Siegel’s
theorem [1]: the sum of the singular series corres-
ponding to the quadratic form f is equal to the
average number of representations of a natural
number by a genus that contains the form f.

Later Ramanathan [2] proved that for any primitive
integral quadratic form with s>3 variables (except
for zero forms with variables s =3 and zero forms

with  variables s=4 whose discriminant is a
perfect square), there is a function
(2m-s)zi
4

E(r,z; f)=1+&———x

|d 2

Xi i S(f H;q) |

a2 ar—H)2 (a7 -H) 2 Jgr-H [

which he called the Eisenstein-Siegel series and
which is regular for any fixed zwhen Imz >0 and

Rez>2—%, analytically extendable in a

neighborhood of z=0, and that

F(r; f)=E(r,z )| 00
Here m and d are respectively the inertia index and
discriminant of f, S(fH;q) is the Gaussian sum. For

s>4 the function E(z,z; f)|,_, coincides with the
function E(z, f) and the formula (3) with Siegel’s

formula (2).
In [3] we proved that the function E(z,z;f)Iis

analytically extendable in a neighborhood of z=0
also in the case where f is any nonzero integral
binary quadratic form and that

F(r;f):%E(r,z;f)|Z:0 further, having defined
the Eisenstein’s series E(z, f) by the formulas
E(r;f):%E(z—,z; )20 for s=2 and

E(z; f) =E(r,7; f)|,oo for s>2, we have

E(z, ) :1+%Zp(n; £)Q" for s=2 and
n=12
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E(r, f) =1+ Zp(n; f)Q" for s>2. Moreover,
n=1

convenient formulas are obtained for calculating of

values of the function p(n; f) in the case where f is

any positive integral form of variables s>2 [4],

[5].
Thus, if the genus of the quadratic form f contains
one class, then according to Siegel’s theorem,

()= =p(n f) for s>3, r(n;f):%p(n;f)

for s=2 and in that case the problem for obtaining
“exact” formulas for r(n; f) is solved completely.
Some papers are devoted to the case of multi-class
genera. For example Van der Blij [6], Lomadze [7],
Vepkhvadze [5] have obtained formulae for r(n; f)
for certain special binary forms, which belong to
multi-class genera. In most cases their formulae for
r(n; f) depend upon the coefficients in the
expansion of certain products of theta functions.

In this paper we obtain formulae for the number of
representations by the binary quadratic forms
X7 + 2% Xy + X5, 3XE — 2% Xy +7X3

3X2 + 2% X, +11x2 and
belonging to the two-class genera.

3xZ — 2%, +11%3

Il.  Preliminaries
Below in this paper n, x, v, w are positive integers;
I, ® « [ are non-negative integers; u is an odd
positive integer, m, h are integers, p is a prime
number; (ﬂ) is a Legendre-Jacobi symbol; r(n; f)
u

denote the number of representations of a positive
integer n by the positive binary quadratic form f
with determinant A.

Lemma 1 ([4], Lemma 14). Let

L(x;m) = mjl,
(m) E;(U 1
@ is a square-free integer. Then
L(1,—a)):% if w=1;

=ﬁ2(%) it w=1(mod4),

1<h<?
4
w>1,
=25 D (gj if w=3(mod4),
1<h<?
2

=23% if o=2,

eI

<he@| S @ | 30 0| —0
16\ 2 6 4\2

if w=2(mod8), w>2,

-y 1L if @=6(mods).

o pBo| — 0
16 16

Lemma 2 (41, Theorem 2). Let
f =ax? +2bxy+cy? is a positive binary quadratic
form with determinant A=ac—-b?, (a,2b,c)=1,
(a20)=1, A=r2w, A=22A(2A;), p'|A,
p?|In. p(n; ) is a “sum of a generalized singular

n=2m, p>2,
p'lIA, plin, u=]]p” Then

series” corresponding to f,

pin
pt2A
% [1 w2
14
p(n' f) _ p/A, p>2 viu
- 1
AV2 H (1—(0)]L(1,—a))}
ple, p>2 PP
where
;a+2 .
7, =22 if 2z, O0<a<ee-3, 2
m=a(mod8);
=0, if 2z O0<a<ee-3, 2a,
m=a(mod8),

or 0<a<ae-1, 2ta;

m-al 1.
=|1+(-1) 2 |22, if 2, =202

Lim-ay) le |
=|1+(-1)?2 22 if 2=, a>ee, 2la,
A, =1(mod 4);
1

=22 if 2, @ =2, Ay =—1(mod4);

Lo ) Ll a4 11
=| 2-(-1)4 22 4|1+ (-1)* (o —2e—2)22

if 2le, a>a, 2o, Ay =-1(mod4);
Loa e lm- 1
=(l+(—1)4(A1 1)+2(m a)}zzae’ it 2|ae,

a>ae+1,
2ta, A, =1(mod4);
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Lia41) lo1
=1+ (-4 (a—e-122 | if 2,

a>ee+l, 24a, A =-1(mod4).

l0:+2

=22 if 2z, O0<a<ae-3, 2
m=a(mod8);
=0, if 2z, 0<a<e&-3, 2
m=a(mod8),

or 0<a<ee-2, 2a;
m-a) ) Lt .
=|1+ (=14 22 , if 2te, a>ee-1,
2|la, m=qa(mod8);
1 Lim= L
22 =(1+(—1)4(m+a’+2(m Ala)}zz(%), if 2k,
az>ae-1,2la, m=—a(mod4);
Lmam ) L
:[1+(—1)4(m o )]22(&), if 2ke, >z,

2o,
m=Aa(mod4);

1 1 1
_ [1+ (_1)Z(m+Ala)+§(m—a) J 25(aE,Ll) if e,

2o, m=-Aa(mod4).

P i 12 B+1,2| B

, if 1>5+1, 218

:[1_(_p—IAJLJ{H{H(—p—'ABﬂ_—l}pl/z
p Jp p 2

it 1<4,2(1,2|8;

Pl

if 1<p, 2|1, 2tp;

AV s 1
_ 1+[p Aj (p naA] 02t
p p

if 1<, 24l

I11.  Basic results
The set of forms with discriminant —80 splits
into to genera of forms and each genus consists two
reduced classes of forms which are respectively

fL=3x2 + 2% X, +7x2, f, =3x2 —2%X%, + 7X3
and
fy=x2+20x%, f, =4x2 +5x3.

P. Kaplan and K.S. Wiliams [6] have obtained for-
mulae for the number of representations of an even
positive integer n by the forms f; and f,.
It is obvious that

r(n; f,) =r(n; f,).
Thus by Siegel’s theorem

r(n; f,) =r(n; f,) :%p(n; ).

The function p(n; f;) may be calculated by the
Lemma 2. So we have
Theorem 1. Let n=2%5%u, (u,10)=1. Then

() 2

vlu

for =0, u=3(mod4),

e G2

for 2la, «>2, u=3(mod4),
or
for a>2, 2a,
u=1(mod4),
=0 otherwise.
The set of forms with discriminant —128 splits into

two genera of forms and each genus consists two
reduced classes of forms which are respectively

fo =3x2 +2x X, +11x3, fg =3x2 —2X X, +11x2
and
fo=x2+32x%, fg=4x2 +4%X, +9x2.
P. Kaplan and K.S. Williams [8] have obtained for-
mulae for the number of representations of an even
positive integer n by the forms fg and f; .
It is obvious that
r(m; f5) =r(n; fg).

Thus by Siegel’s theorem

r(n; ) = 1(n; ) =~ p(n; 1)

The function p(n; f;)can be calculated by the

Lemma 2.
So we have

Theorem 2. Let n=2%u, (u,2)=1. Then

r(n; fs) =r(n; fg) = Z[‘sz for =0,

vlu

u=3(mod8),

:22(_72j for a=2, u=3(mod8s),

v|u
and
for a¢>4, u=1(mod8),
or u=3(mod8),
=0 otherwise.
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